Editing
2019 Dec Bronze Problem 1 Cow Gymnastics
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Official Problem Statement == [http://www.usaco.org/index.php?page=viewproblem2&cpid=963 Cow Gymnastics] ==Problem Statement== Cow Gymnastics is a USACO problem from the December 2020 contest. The problem statement is as follows: Farmer John has N cows (1 β€ N β€ 100,000) that he wants to train for a gymnastics competition. Each cow i has a skill level Si (1 β€ Si β€ 1,000,000,000). FJ has M exercises (1 β€ M β€ 100,000) that he can use to train his cows. Each exercise j has a difficulty level Dj (1 β€ Dj β€ 1,000,000,000). FJ wants to assign each cow to exactly one exercise. He wants to maximize the total skill level of all cows, but he also wants to make sure that the total difficulty of the exercises assigned to his cows is as small as possible. Help FJ determine the maximum total skill level of his cows that can be achieved. ==Solution== The solution to this problem can be found using a dynamic programming approach. We create an array dp[i][j] which stores the maximum total skill level of cows that can be achieved when considering the first i cows and the first j exercises. We initialize the array with dp[0][0] = 0. Then, for each i and j, we consider two cases: Case 1: We assign the ith cow to the jth exercise. In this case, the maximum total skill level of cows that can be achieved is dp[i-1][j-1] + Si. Case 2: We do not assign the ith cow to the jth exercise. In this case, the maximum total skill level of cows that can be achieved is dp[i][j-1]. We take the maximum of these two cases and store it in dp[i][j]. Finally, the answer to the problem is dp[N][M], which is the maximum total skill level of cows that can be achieved when considering all N cows and all M exercises. The following is a C++ implementation of this solution: <pre> int N, M; int S[MAXN], D[MAXM]; int dp[MAXN][MAXM]; int main() { cin >> N >> M; for (int i = 0; i < N; i++) cin >> S[i]; for (int j = 0; j < M; j++) cin >> D[j]; dp[0][0] = 0; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { dp[i][j] = max(dp[i-1][j-1] + S[i], dp[i][j-1]); } } cout << dp[N][M] << endl; return 0; } </pre> [[Category:Yearly_2019_2020]] [[Category:Bronze]] [[Category:Simulation]] [[Category:Brute Force]] [[Category:Sorting]]
Summary:
Please note that all contributions to Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
My wiki:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information