Editing
2015 Feb Gold Problem 1 Cow Hopscotch (Gold)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Official Problem Statement == [http://www.usaco.org/index.php?page=viewproblem2&cpid=532 Cow Hopscotch (Gold)] == Problem == In the game of Cow Hopscotch, several cows (which might include Bessie) are standing on a grid of squares that is R (1 β€ R β€ 750) rows by C (1 β€ C β€ 750) columns. The square at the intersection of row r and column c contains a number H_rc (1 β€ H_rc β€ R*C), which is different for every square. A move consists of a jump from the current square to any square that is strictly to the right (higher column) and strictly downwards (higher row) β i.e., a move is to a square that is diagonally down-and-to-the-right. When making a move, the cow must jump to a square with a different number than the one she is currently standing on. Given the layout of the grid and the starting and ending squares, what is the number of different ways a cow can get from the starting square to the ending square, moving only by legal moves? Please print your result modulo 10^9+7. == Solution == The solution to this problem uses the concept of dynamic programming. Here is the key idea of the solution: Create a 2D dynamic programming array dp[][] where dp[i][j] indicates the number of different ways a cow can get to the cell (i, j). The base case is dp[0][0] = 1, as there's only one way to reach the starting cell. For every cell (i, j), iterate over every cell (p, q) that is to the upper-left of (i, j), i.e., where p < i and q < j. If the cell (p, q) has a different number than (i, j), then add dp[p][q] to dp[i][j]. The final answer will be dp[R-1][C-1] (0-indexed), which is the number of ways to reach the final cell from the starting cell. To speed up the solution and avoid the O(n^2) scan for each cell, one might use a Fenwick tree or a segment tree to accumulate the dp values and update them. == Code == === C++ === <pre> #include <bits/stdc++.h> using namespace std; const int MOD = 1e9+7; vector<vector<int>> grid; vector<vector<int>> columns; vector<BIT*> bits; class BIT { public: vector<int> tree; vector<int> indices; BIT(vector<int>& set) { indices.resize(set.size() + 2); tree.resize(indices.size()); indices[0] = -1; int index = 1; for(int out: set) { indices[index++] = out; } indices[indices.size() - 1] = INT_MAX; } void update(int index, int val) { int actual = lower_bound(indices.begin(), indices.end(), index) - indices.begin(); while(actual < indices.size()) { tree[actual] += val; if(tree[actual] >= MOD) tree[actual] -= MOD; actual += actual & -actual; } } int query(int index) { int left = 0; int right = indices.size() - 1; while(left != right) { int mid = (left+right+1)/2; if(indices[mid] > index) { right = mid-1; } else { left = mid; } } int ret = 0; while(left > 0) { ret += tree[left]; if(ret >= MOD) ret -= MOD; left -= left & -left; } return ret; } }; void initializeGrid(int r, int c, int colors) { grid.resize(r, vector<int>(c)); columns.resize(colors + 1); for(int i = 0; i < r; i++) { for(int j = 0; j < c; j++) { cin >> grid[i][j]; } } } void processColumns(int r, int c) { for(int j = 0; j < c; j++) { for(int i = 0; i < r; i++) { int color = grid[i][j]; if(!columns[color].empty() && columns[color].back() == j) continue; columns[color].push_back(j); } } } void initializeBits(int colors) { bits.resize(colors + 1); for(int i = 1; i < bits.size(); i++) { if(!columns[i].empty()) { bits[i] = new BIT(columns[i]); } } } void processFullBIT(int r, int c, BIT* full) { for(int i = 1; i < r - 1; i++) { for(int j = c - 2; j > 0; j--) { int val = full->query(j - 1) - bits[grid[i][j]]->query(j - 1); if(val < 0) val += MOD; full->update(j, val); bits[grid[i][j]]->update(j, val); } } } int calculateResult(int c, int r, BIT* full) { int result = full->query(c - 2) - bits[grid[r - 1][c - 1]]->query(c - 2); if(result < 0) result += MOD; return result; } int main() { ios::sync_with_stdio(false); cin.tie(0); int r, c, colors; cin >> r >> c >> colors; initializeGrid(r, c, colors); processColumns(r, c); initializeBits(colors); vector<int> gen(c); iota(gen.begin(), gen.end(), 0); BIT* full = new BIT(gen); full->update(0, 1); bits[grid[0][0]]->update(0, 1); processFullBIT(r, c, full); int result = calculateResult(c, r, full); cout << result << '\n'; return 0; } </pre> === Java === <pre> import java.io.*; import java.util.*; public class BarnJumpGold { static final int MOD = 1000000007; static int[][] grid; static ArrayList<Integer>[] columns; static BIT[] bits; public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new FileReader("barnjump.in")); PrintWriter pw = new PrintWriter(new BufferedWriter(new FileWriter("barnjump.out"))); StringTokenizer st = new StringTokenizer(br.readLine()); int r = Integer.parseInt(st.nextToken()); int c = Integer.parseInt(st.nextToken()); int colors = Integer.parseInt(st.nextToken()); initializeGrid(br, r, c, colors); processColumns(r, c); initializeBits(colors); ArrayList<Integer> gen = new ArrayList<>(); for(int i = 0; i < c; i++) { gen.add(i); } BIT full = new BIT(gen); full.update(0, 1); bits[grid[0][0]].update(0, 1); processFullBIT(r, c, full); int result = calculateResult(c, r, full); pw.println(result); pw.close(); } private static void initializeGrid(BufferedReader br, int r, int c, int colors) throws IOException { grid = new int[r][c]; columns = new ArrayList[colors+1]; for(int i = 1; i < columns.length; i++) { columns[i] = new ArrayList<>(); } for(int i = 0; i < r; i++) { StringTokenizer st = new StringTokenizer(br.readLine()); for(int j = 0; j < c; j++) { grid[i][j] = Integer.parseInt(st.nextToken()); } } } private static void processColumns(int r, int c) { for(int j = 0; j < c; j++) { for(int i = 0; i < r; i++) { int color = grid[i][j]; if(!columns[color].isEmpty() && columns[color].get(columns[color].size()-1) == j) continue; columns[color].add(j); } } } private static void initializeBits(int colors) { bits = new BIT[colors+1]; for(int i = 1; i < bits.length; i++) { if(columns[i].size() > 0) { bits[i] = new BIT(columns[i]); } } } private static void processFullBIT(int r, int c, BIT full) { for(int i = 1; i < r-1; i++) { for(int j = c-2; j > 0; j--) { int val = full.query(j-1) - bits[grid[i][j]].query(j-1); if(val < 0) val += MOD; full.update(j, val); bits[grid[i][j]].update(j, val); } } } private static int calculateResult(int c, int r, BIT full) { int result = full.query(c-2) - bits[grid[r-1][c-1]].query(c-2); if(result < 0) result += MOD; return result; } static class BIT { public int[] tree; public int[] indices; public BIT(ArrayList<Integer> set) { indices = new int[set.size()+2]; tree = new int[indices.length]; indices[0] = -1; int index = 1; for(int out: set) { indices[index++] = out; } indices[indices.length-1] = Integer.MAX_VALUE; } public void update(int index, int val) { int actual = Arrays.binarySearch(indices, index); while(actual < indices.length) { tree[actual] += val; if(tree[actual] >= MOD) tree[actual] -= MOD; actual += actual & -actual; } } public int query(int index) { int left = 0; int right = indices.length-1; while(left != right) { int mid = (left+right+1)/2; if(indices[mid] > index) { right = mid-1; } else { left = mid; } } int ret = 0; while(left > 0) { ret += tree[left]; if(ret >= MOD) ret -= MOD; left -= left & -left; } return ret; } } } </pre> === Python === <pre> MOD = int(1e9+7) class BIT: def __init__(self, arr): self.indices = [-1] + arr + [float("inf")] self.tree = [0] * len(self.indices) def update(self, index, val): actual = self.indices.index(index) while actual < len(self.indices): self.tree[actual] += val if self.tree[actual] >= MOD: self.tree[actual] -= MOD actual += actual & -actual def query(self, index): left = 0 right = len(self.indices) - 1 while left != right: mid = (left + right + 1) // 2 if self.indices[mid] > index: right = mid - 1 else: left = mid ret = 0 while left > 0: ret += self.tree[left] if ret >= MOD: ret -= MOD left -= left & -left return ret def barnGold(): r, c, colors = map(int, input().split()) grid = [list(map(int, input().split())) for _ in range(r)] columns = [[] for _ in range(colors + 1)] bits = [None] * (colors + 1) for j in range(c): for i in range(r): color = grid[i][j] if columns[color] and columns[color][-1] == j: continue columns[color].append(j) for i in range(1, len(bits)): if columns[i]: bits[i] = BIT(columns[i]) gen = list(range(c)) full = BIT(gen) full.update(0, 1) bits[grid[0][0]].update(0, 1) for i in range(1, r - 1): for j in range(c - 2, 0, -1): val = full.query(j - 1) - bits[grid[i][j]].query(j - 1) if val < 0: val += MOD full.update(j, val) bits[grid[i][j]].update(j, val) ret = full.query(c - 2) - bits[grid[r - 1][c - 1]].query(c - 2) if ret < 0: ret += MOD print(ret) barnGold() </pre> [[Category:Yearly_2014_2015]] [[Category:Gold]] [[Category:2D Array]] [[Category:Dynamic Programming]]
Summary:
Please note that all contributions to Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
My wiki:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information